

SK-RD4AD: Skip-Connected Reverse Distillation For Robust One-Class Anomaly Detection

Eunju Park¹ Taekyung Kim² Minju Kim³ Hojun Lee⁴ Gil-Jun Lee⁵ ¹Ewha Womans Univ. ²Dongguk Univ. ³Chung-Ang Univ. ⁴Keimyung Univ. ⁵SK On

Motivation

Precise anomaly localization is essential for industrial visual inspection. Limitations of existing reverse distillation methods

- Feature degradation from student over-compression leads to poor detection of subtle or small anomalies (e.g., transistor defects).
- Insufficient semantic transfer via layer-wise skips limits accuracy on complex parts.
- ► Our solution: Asymmetric skip connections enable cross-hierarchical feature transfer, significantly improving anomaly localization and detection performance.

Framework of SK-RD4AD

1) Asymmetric Skip Knowledge Module:

Asymmetric skip connections from teacher encoder (E^2 , E^3) to student decoder (D¹, D²) enable cross-hierarchical feature transfer and preserve semantic information for accurate anomaly localization.

2) Dual-Loss Supervision:

Combining cosine similarity and skip consistency losses guides the student to mimic teacher features and align representations, enhancing both global and local details.

Methods

0. Notations

X : input image

T(·): teacher encoder

S(·): student decoder

E¹, E², E³: teacher encoder features

D¹, D², D³: student decoder features

Lcosine: cosine similarity loss Lskip: skip consistency loss

1. Asymmetric Skip Knowledge Module

- 1) Non-corresponding Skip Connections
- Connects $E^2 \rightarrow D^1$, $E^3 \rightarrow D^2$
- Enables cross-hierarchical feature transfer Student Decode
- Preserves both low-level texture and high-level semantics

2) Feature Fusion

- : D1 = ReLU(Conv1x1(E^1)) + E^2
- : $D2 = ReLU(Conv1x1(D^1)) + E^3$
- Enhances decoder's ability to reconstruct complex features

2. Triple-Loss Supervision

1) Cosine Similarity Loss

- : Lcosine = 1 cosine(F_T, F_S)
- Guides student to mimic teacher's feature direction

2) Skip Consistency Loss

- : Lskip = 0.5 * (|| $E^2 D^1 ||^2 + || E^3 D^2 ||^2$)
- Enforces alignment between transferred and reconstructed features

3) L2 Reconstruction Loss

- : $Lrecon = ||X S(T(X))||^2$
- Ensures pixel-level reconstruction fidelity.

3. Total Objective

 $L_{total} = \alpha * L_{recon} + \beta * L_{cosine} + \gamma * L_{skip}$

► The three losses ensure pixel-level, feature-level, and hierarchical consistency.

Experiments

Qualitative Analysis of MVTec-AD, VAD and VisA datasets

MVTec-AD

VAD

▶ Quantitative Analysis of MVTec-AD, VisA datasets

Category/Method		US [3]	MF [16]	SPADE [5]	PaDiM [6]	RIAD [17]	CutPaste [12]	RD4AD [7]	Ours	Category/Method	PaDiM [6]	SPADE [5]	PatchCore [14]	RD4AD [7]	Ours
Textures	Carpet	-/87.9	- / 87.8	97.5 / 94.7	99.1 / 96.2	96.3 / -	98.3 / -	98.9 / 97.0	99.2 / 97.7	Candle	98.6 / 95.7	97.9 / 93.2	99.2 / 94.0	98.9 / 92.2	98.6 / 93.9
	Grid	-/95.2	-/86.5	93.7 / 86.7	97.3 / 94.6	98.8 / -	-/-	99.3 / 97.6	99.3 / 97.6	Candic					
	Leather	-/94.5	-/95.9	97.6 / 97.2	99.2 / 97.8	99.4 / -	99.5 / -	99.4 / 99.1	99.6 / 99.2	Capsule	97.4 / 74.9	60.7 / 36.1	96.5 / 85.5	99.4 / 56.9	99.1 / 91.9
	Tile	-/94.6	-/88.1	87.4 / 75.9	94.1 / 86.0	89.1/-	90.5 / -	95.6 / 90.6	96.1 / 91.7	Cashew	98.5 / 87.9	86.4 / 57.4	99.2 / 94.5	94.4 / 79.0	98.1 / 87.3
	Wood	-/91.1	- / 84.8	88.5 / 87.4	94.9 / 91.1	85.8 / -	95.5 / -	95.3 / 90.9	95.4 / 92.5	Chamber and	00 0 / 02 5	00 (100 0	00 0 1017	07 (100 5	07.7 / 04.2
	Average	-/92.7	-/88.6	92.9 / 88.4	96.9 / 93.2	93.9 / -	96.3 / -	97.7 / 95.0	97.92 / 95.74	Chewing gum	98.9 / 83.5	98.6 / 93.9	98.9 / 84.6	97.6 / 92.5	97.7 / 94.3
	Bottle	-/93.1	-/88.8	98.4 / 95.5	98.3 / 94.8	97.6/-	97.67-	98.7 / 96.6	98.8 / 96.9	Fryum	95.4 / 80.2	96.7 / 91.3	95.9 / 95.3	96.4 / 81.0	96.7 / 90.3
Objects	Cable	-/81.8	-/93.7	97.2 / 90.9	96.7 / 88.8	84.2 / -	90.0 / -	97.4 / 91.0	98.0 / 92.9	Macaroni1	99.1 / 92.1	96.2 / 61.3	98.5 / 95.4	99.3 / 71.9	99.3 / 95.5
	Capsule	-/96.8	- / 87.9	99.0 / 93.7	98.5 / 93.5	92.8 / -	97.4 / -	98.7 / 95.8	98.7 / 96.2	14 10	06.5.155.4	07.5.170.1	00 5 101 1	00.1.120.0	00 0 /05 0
	Hazelnut	-/96.5	-/88.6	99.1 / 95.4	98.2 / 92.6	96.17-	97.3 / -	98.9 / 95.5	99.1 / 96.2	Macaroni2	96.5 / 75.4	87.5 / 63.4	93.5 / 94.4	99.1 / 68.0	99.3 / 95.2
	Metal Nut	-/94.2	-/86.9	98.1 / 94.4	97.2 / 85.6	92.5/-	93.1 / -	97.3 / 92.3	97.6 / 92.7	PCB1	99.3 / 91.3	66.9 / 38.4	99.8 / 94.3	99.6 / 43.2	99.6 / 93.7
	Pill	-/96.1	-/93.0	96.5 / 94.6	95.7 / 92.7	95.7/-	95.7 / -	98.2 / 96.4	98.4 / 97.2	PCB2	98.7 / 88.7	71.1 / 42.2	98.4 / 89.2	98.3 / 46.4	98.3 / 89.2
	Screw	-/94.2	-/95.4	98.9 / 96.0	98.5 / 94.4	98.8 / -	96.7 / -	99.6 / 98.2	99.6 / 98.5						
	Toothbrush	-/93.3	- / 87.7	97.9 / 93.5	98.8 / 93.1	98.9 / -	98.1 / -	99.1 / 94.5	99.1 / 94.3	PCB3	98.7 / 84.9	95.1 / 80.3	98.9 / 90.9	99.3 / 80.3	98.3 / 90.3
	Transistor	-/66.6	-/92.6	94.1 / 87.4	97.5 / 84.5	87.7 / -	93.0 / -	92.5 / 78.0	93.2 / 80.1	PCB4	97.9 / 81.6	89.0 / 71.6	98.3 / 90.1	98.2 / 72.2	98.6 / 89.0
	Zipper	-/95.1	-/93.6	96.5 / 92.6	98.5 / 95.9	97.8 / -	99.3 / -	98.2 / 95.4	98.8 / 96.6	Pipe fryum	99.3 / 92.5	81.8 / 61.7	99.3 / 95.7	99.1 / 68.3	99.1 / 94.8
	Average	-/90.8	-/90.8	97.6 / 93.4	97.8 / 91.6	94.37-	95.8 / -	97.9 / 93.4	98.13 / 94.16	- ipo iryani					
	Total Average	-/91.4	-/90.1	96.5 / 91.7	97.5 / 92.1	94.2 / -	96.0 / -	97.8 / 93.9	98.06 / 94.69	Average	98.1 / 85.9	85.6 / 65.9	98.1 / 91.2	98.3 / 70.9	98.5 / 92.1

► Ablation Study

Model	AUROC (%)	AUPRO (%)
RD4AD (Baseline)	97.3	92.3
SK-RD4AD (Ours)	98.06	94.69
Corresponding Skip Connections	97.72	93.50
No Skip Connections	96.3	91.4
Bottleneck Removal	97.91	94.33
Additional Skip Connection	97.90	94.17

Skip Connection Strategy Comparison

Factor	RD4AD	SK-RD4AD
Inference Time (s)	0.31	0.37 (+19%)
Memory Usage (MB)	352	401 (+13%)
Performance (AUROC)	97.3	98.06 (+0.76)

Training Convergence Curve

► Key observation: SK-RD4AD achieves the highest AUROC (98.06%) and AUPRO (94.69%), converges faster and more stably than RD4AD, and does so with only minor increases in inference time and memory usage — demonstrating superior accuracy and practical efficiency.